Eukaryotic organisms in Proterozoic oceans.
نویسندگان
چکیده
The geological record of protists begins well before the Ediacaran and Cambrian diversification of animals, but the antiquity of that history, its reliability as a chronicle of evolution and the causal inferences that can be drawn from it remain subjects of debate. Well-preserved protists are known from a relatively small number of Proterozoic formations, but taphonomic considerations suggest that they capture at least broad aspects of early eukaryotic evolution. A modest diversity of problematic, possibly stem group protists occurs in ca 1800-1300 Myr old rocks. 1300-720 Myr fossils document the divergence of major eukaryotic clades, but only with the Ediacaran-Cambrian radiation of animals did diversity increase within most clades with fossilizable members. While taxonomic placement of many Proterozoic eukaryotes may be arguable, the presence of characters used for that placement is not. Focus on character evolution permits inferences about the innovations in cell biology and development that underpin the taxonomic and morphological diversification of eukaryotic organisms.
منابع مشابه
Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry.
Recent years have witnessed major upheavals in views about early eukaryotic evolution. One very significant finding was that mitochondria, including hydrogenosomes and the newly discovered mitosomes, are just as ubiquitous and defining among eukaryotes as the nucleus itself. A second important advance concerns the readjustment, still in progress, about phylogenetic relationships among eukaryoti...
متن کاملPaleobiological perspectives on early eukaryotic evolution.
Eukaryotic organisms radiated in Proterozoic oceans with oxygenated surface waters, but, commonly, anoxia at depth. Exceptionally preserved fossils of red algae favor crown group emergence more than 1200 million years ago, but older (up to 1600-1800 million years) microfossils could record stem group eukaryotes. Major eukaryotic diversification ~800 million years ago is documented by the increa...
متن کاملAnoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth's middle age.
Molecular oxygen (O(2)) began to accumulate in the atmosphere and surface ocean ca. 2,400 million years ago (Ma), but the persistent oxygenation of water masses throughout the oceans developed much later, perhaps beginning as recently as 580-550 Ma. For much of the intervening interval, moderately oxic surface waters lay above an oxygen minimum zone (OMZ) that tended toward euxinia (anoxic and ...
متن کاملMolybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans.
How much dissolved oxygen was present in the mid-Proterozoic oceans between 1.8 and 1.0 billion years ago is debated vigorously. One model argues for oxygenation of the oceans soon after the initial rise of atmospheric oxygen approximately 2.3 billion years ago. Recent evidence for H(2)S in some mid-Proterozoic marine basins suggests, however, that the deep ocean remained anoxic until much late...
متن کاملThe evolution of modern eukaryotic phytoplankton.
The community structure and ecological function of contemporary marine ecosystems are critically dependent on eukaryotic phytoplankton. Although numerically inferior to cyanobacteria, these organisms are responsible for the majority of the flux of organic matter to higher trophic levels and the ocean interior. Photosynthetic eukaryotes evolved more than 1.5 billion years ago in the Proterozoic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences
دوره 361 1470 شماره
صفحات -
تاریخ انتشار 2006